18 research outputs found

    Transradial Amputee Gesture Classification Using an Optimal Number of sEMG Sensors: An Approach Using ICA Clustering

    Full text link
    © 2001-2011 IEEE. Surface electromyography (sEMG)-based pattern recognition studies have been widely used to improve the classification accuracy of upper limb gestures. Information extracted from multiple sensors of the sEMG recording sites can be used as inputs to control powered upper limb prostheses. However, usage of multiple EMG sensors on the prosthetic hand is not practical and makes it difficult for amputees due to electrode shift/movement, and often amputees feel discomfort in wearing sEMG sensor array. Instead, using fewer numbers of sensors would greatly improve the controllability of prosthetic devices and it would add dexterity and flexibility in their operation. In this paper, we propose a novel myoelectric control technique for identification of various gestures using the minimum number of sensors based on independent component analysis (ICA) and Icasso clustering. The proposed method is a model-based approach where a combination of source separation and Icasso clustering was utilized to improve the classification performance of independent finger movements for transradial amputee subjects. Two sEMG sensor combinations were investigated based on the muscle morphology and Icasso clustering and compared to Sequential Forward Selection (SFS) and greedy search algorithm. The performance of the proposed method has been validated with five transradial amputees, which reports a higher classification accuracy (> 95%). The outcome of this study encourages possible extension of the proposed approach to real time prosthetic applications

    Improved prosthetic hand control with concurrent use of myoelectric and inertial measurements

    Get PDF
    Abstract Background Myoelectric pattern recognition systems can decode movement intention to drive upper-limb prostheses. Despite recent advances in academic research, the commercial adoption of such systems remains low. This limitation is mainly due to the lack of classification robustness and a simultaneous requirement for a large number of electromyogram (EMG) electrodes. We propose to address these two issues by using a multi-modal approach which combines surface electromyography (sEMG) with inertial measurements (IMs) and an appropriate training data collection paradigm. We demonstrate that this can significantly improve classification performance as compared to conventional techniques exclusively based on sEMG signals. Methods We collected and analyzed a large dataset comprising recordings with 20 able-bodied and two amputee participants executing 40 movements. Additionally, we conducted a novel real-time prosthetic hand control experiment with 11 able-bodied subjects and an amputee by using a state-of-the-art commercial prosthetic hand. A systematic performance comparison was carried out to investigate the potential benefit of incorporating IMs in prosthetic hand control. Results The inclusion of IM data improved performance significantly, by increasing classification accuracy (CA) in the offline analysis and improving completion rates (CRs) in the real-time experiment. Our findings were consistent across able-bodied and amputee subjects. Integrating the sEMG electrodes and IM sensors within a single sensor package enabled us to achieve high-level performance by using on average 4-6 sensors. Conclusions The results from our experiments suggest that IMs can form an excellent complimentary source signal for upper-limb myoelectric prostheses. We trust that multi-modal control solutions have the potential of improving the usability of upper-extremity prostheses in real-life applications

    A comparison of post-processing techniques on the performance of EMG based pattern recognition system for the transradial amputees

    Full text link
    © 2016 IEEE. Pattern recognition control applied on surface electromyography (EMG) from the extrinsic hand muscles has shown great promise for the control of powered prosthetics for transradial amputees. The use of limb prostheses is essential for maintaining personal independence and a more effective inclusion in society. However, due to their poor control, imposed by the reduced accuracy of hand movement classification, EMG-driven upper limb prostheses are still not widely used. Hence, post-processing techniques were proposed to reduce the misclassification rates. In this paper, we investigate the effect of two post-processing techniques, namely majority vote and Bayesian fusion, on the performance of EMG-based PR systems when applied on amputees. We measured the effectiveness of a number of time and frequency-based feature extraction methods with different post-processing techniques and various numbers of voting decisions. EMG data was collected from four transradial amputees while imagining seven classes of hand movements. Our results suggested that the recently proposed Time Domain Power-Spectral Descriptors (TD-PSD) can significantly enhance the performance of EMG pattern recognition and that the use of the suggested post-processing techniques can further enhance the performance of EMG-based PR systems, with error rates of approximately 5% on average across all amputees. Additionally, in problems with a large number of EMG channels, no significant differences were observed between the performance of both Bayesian fusion and majority vote

    A Framework of Temporal-Spatial Descriptors-Based Feature Extraction for Improved Myoelectric Pattern Recognition

    Full text link
    © 2001-2011 IEEE. The extraction of the accurate and efficient descriptors of muscular activity plays an important role in tackling the challenging problem of myoelectric control of powered prostheses. In this paper, we present a new feature extraction framework that aims to give an enhanced representation of muscular activities through increasing the amount of information that can be extracted from individual and combined electromyogram (EMG) channels. We propose to use time-domain descriptors (TDDs) in estimating the EMG signal power spectrum characteristics; a step that preserves the computational power required for the construction of spectral features. Subsequently, TDD is used in a process that involves: 1) representing the temporal evolution of the EMG signals by progressively tracking the correlation between the TDD extracted from each analysis time window and a nonlinearly mapped version of it across the same EMG channel and 2) representing the spatial coherence between the different EMG channels, which is achieved by calculating the correlation between the TDD extracted from the differences of all possible combinations of pairs of channels and their nonlinearly mapped versions. The proposed temporal-spatial descriptors (TSDs) are validated on multiple sparse and high-density (HD) EMG data sets collected from a number of intact-limbed and amputees performing a large number of hand and finger movements. Classification results showed significant reductions in the achieved error rates in comparison to other methods, with the improvement of at least 8% on average across all subjects. Additionally, the proposed TSDs achieved significantly well in problems with HD-EMG with average classification errors of <5% across all subjects using windows lengths of 50 ms only

    Adaptive windowing framework for surface electromyogram-based pattern recognition system for transradial amputees

    Get PDF
    © 2018 by the authors. Licensee MDPI, Basel, Switzerland. Electromyogram (EMG)-based Pattern Recognition (PR) systems for upper-limb prosthesis control provide promising ways to enable an intuitive control of the prostheses with multiple degrees of freedom and fast reaction times. However, the lack of robustness of the PR systems may limit their usability. In this paper, a novel adaptive time windowing framework is proposed to enhance the performance of the PR systems by focusing on their windowing and classification steps. The proposed framework estimates the output probabilities of each class and outputs a movement only if a decision with a probability above a certain threshold is achieved. Otherwise (i.e., all probability values are below the threshold), the window size of the EMG signal increases. We demonstrate our framework utilizing EMG datasets collected from nine transradial amputees who performed nine movement classes with Time Domain Power Spectral Descriptors (TD-PSD), Wavelet and Time Domain (TD) feature extraction (FE) methods and a Linear Discriminant Analysis (LDA) classifier. Nonetheless, the concept can be applied to other types of features and classifiers. In addition, the proposed framework is validated with different movement and EMG channel combinations. The results indicate that the proposed framework works well with different FE methods and movement/channel combinations with classification error rates of approximately 13% with TD-PSD FE. Thus, we expect our proposed framework to be a straightforward, yet important, step towards the improvement of the control methods for upper-limb prostheses

    Recurrent Fusion of Time-Domain Descriptors Improves EMG-based Hand Movement Recognition.

    Full text link
    Controlling powered prostheses with myoelectric pattern recognition (PR) provides a natural human-robot interfacing scheme for amputees who lost their limbs. Research in this direction reveals that the challenges prohibiting reliable clinical translation of myoelectric interfaces are mainly driven by the quality of the extracted features. Hence, developing accurate and reliable feature extraction techniques is of vital importance for facilitating clinical implementation of Electromyogram (EMG) PR systems. To overcome this challenge, we proposed a combination of Range Spatial Filtering (RSF) and Recurrent Fusion of Time Domain Descriptors (RFTDD) in order to improve the classifier performance and make the prosthetic hand control more appropriate for clinical applications. RSF is used to increase the number of EMG signals available for feature extraction by focusing on the spatial information between all possible logical combinations of the physical EMG channels. RFTDD is then used to capture the temporal information by applying a recurrent data fusion process on the resulting orientation-based time-domain (TD) features, with a sigmoidal function to limit the features range and overcome the vanishing amplitudes problem. The main advantages of the proposed method include 1) its potential in capturing the temporal-spatial dependencies of the EMG signals, leading to reduced classification errors, and 2) the simplicity with which the features are extracted, as any kind of simple TD features can be adopted with this method. The performance of the proposed RFTDD is then benchmarked across many well-known TD features individually and as sets to prove the power of the RFTDD method on two EMG datasets with a total of 31 subjects. Testing results revealed an approximate reduction of 12% in classification errors across all subjects when using the proposed method against traditional feature extraction methods.Clinical Relevance-Establishing significance and importance of RFTDD, with simple time-domain features, for robust and low-cost clinical applications
    corecore